Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiangshan Wang,* Daqing Shi and Shujiang Tu

Department of Chemistry, Xuzhou Normal University, Xuzhou 221116, People's Republic of China

Correspondence e-mail: xswang@xznu.edu.cn

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.040$
$w R$ factor $=0.103$
Data-to-parameter ratio $=15.4$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2003 International Union of Crystallography Printed in Great Britain - all rights reserved

9-(4-Chlorophenyl)-3,3,6,6-tetramethyl-10-(4-methylphenyl)-1,2,3,4,5,6,7,8,9,10-decahydroacridine-1,8-dione

The title compound, $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{ClNO}_{2}$, has been synthesized by the reaction of 4-chlorobenzaldehyde, 5,5-dimethyl-1,3-cyclohexanedione and p-toluidine in ethylene glycol under microwave irradiation. X-ray analysis reveals that the 1,4dihydropyridine ring adopts a boat conformation, and the other two partially saturated six-membered rings adopt halfchair conformations.

Comment

1,4-Dihydropyridines (DHP) are well known compounds, as a consequence of their pharmacological profile as calcium channel modulators (Janis et al., 1987). Chemical modifications of the DHP ring, such as the presence of different substituents (Eisner \& Kuthan, 1972) or heteroatoms (Chorvat \& Rorig, 1988), have extended the structure-activity relationships and afforded some insight into the molecular interactions at the receptor level. We report here the crystal structure of the title compound, (I).

(1)

The 1,4-dihydropyridine ring adopts a boat conformation (Fig. 1); atoms C7, C12, C14 and C19 are coplanar, while atoms C 13 and N deviate from the plane by 0.192 (3) and 0.091 (3) A , respectively. The dihedral angle between the two phenyl rings is $15.26(6)^{\circ}$. The $\mathrm{C} 7=\mathrm{C} 12$ and $\mathrm{C} 14=\mathrm{C} 19$ bond distances are 1.349 (2) and 1.347 (2) \AA (Table 1), close to that of a typical $\mathrm{C}=\mathrm{C}$ double bond $(1.34 \AA)$. The values of the corresponding $\mathrm{C}=\mathrm{C}$ bond distances in the 1,4-dihydropyridine moiety are 1.341 (3)-1.356 (3) Å for diether 4-(3,4-methylenedioxylphenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate (Tu et al., 2002) and 1.336 (2)-1.365 (2) A for 7,7-dimethyl-2,4-diphenyl-5-oxo-1,4,5,6,7,8-hexahydroquinoline (Wang, Shi \& Tu, 2002).

In the other two partially saturated six-membered rings, atom C9 deviates from the $\mathrm{C} 7-\mathrm{C} 8 / \mathrm{C} 10-\mathrm{C} 12$ plane by 0.644 (3) \AA, and atom C17 deviates from the $\mathrm{C} 14-\mathrm{C} 16 / \mathrm{C} 18-$ C19 plane by 0.628 (3) \AA, suggesting that these rings adopt half-chair confirmations; this structure is similar to that of 7,7-

Received 1 July 2003

Accepted 8 July 2003
Online 17 July 2003
dimethyl-2-amino-3-cyano-4-(3,4-methylenedioxylphenyl)-5-oxo-5,6,7,8-tetrahydro- 4 H -benzo[b]pyran (Wang, Shi, Tu et al., 2002).

Experimental

The title compound, (I), was prepared by the reaction of 4-chlorobenzaldehyde, 5,5 -dimethyl-1,3-cyclohexanedione and p-toluidine in ethylene glycol under microwave irradiation (m.p. 546-548 K). Single crystals of (I), suitable for X-ray diffraction, were obtained by slow evaporation from an ethanol solution.

Crystal data

$\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{ClNO}_{2}$
$M_{r}=474.02$
Monoclinic, $P 2_{\mathrm{f}} / n$
$a=15.246$ (2) A
$b=11.007$ (2) \AA
$c=16.244$ (2) A
$\beta=102.31(1)^{\circ}$
$V=2663.0$ (7) \AA^{3}
$Z=4$
$D_{x}=1.182 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 29
\quad reflections
$\theta=2.8-12.9^{\circ}$
$\mu=0.17 \mathrm{~mm}^{-1}$
$T=296(2) \mathrm{K}$
Block, colorless
$0.44 \times 0.36 \times 0.36 \mathrm{~mm}$

Data collection

Siemens $P 4$ diffractometer ω scans
Absorption correction: empirical (SHELXS86; Sheldrick, 1990)
$T_{\text {min }}=0.948, T_{\text {max }}=0.965$
5509 measured reflections
4826 independent reflections
2812 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& R_{\text {int }}=0.012 \\
& \theta_{\max }=25.3^{\circ} \\
& h=0 \rightarrow 18 \\
& k=0 \rightarrow 13 \\
& l=-19 \rightarrow 19 \\
& 3 \text { standard reflections } \\
& \quad \text { every } 97 \text { reflections } \\
& \text { intensity decay: } 3.0 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.040$
$w R\left(F^{2}\right)=0.103$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0526 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$S=0.91$
4826 reflections
313 parameters
H -atom parameters constrained

Figure 1
The molecular structure of (I), showing 50% probability displacement ellipsoids and the atom-numbering scheme.

All H atoms were positioned geometrically and refined as riding $\left[\mathrm{C}-\mathrm{H}=0.93-0.98 \AA\right.$]. There are solvent accessible voids of $43 \AA^{3}$ in the crystal structure. However, solvent molecules were not detected, which agrees with the elemental analysis.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Sheldrick, 1997); program(s) used to solve structure: $S H E L X T L$; program(s) used to refine structure: SHELXTL; molecular graphics: $S H E L X T L$; software used to prepare material for publication: SHELXTL.

We thank the Foundation of the 'Surpassing Project' of Jiangsu Province for financial support.

References

Chorvat, R. T. \& Rorig, K. J. (1988). J. Org. Chem. 53, 5779-5781.
Eisner, V. \& Kuthan, J. (1972). Chem. Rev. 72, 1-42.
Janis, R. A., Silver, P. J. \& Triggle, D. J. (1987). Adv. Drug. Res. 16, 309-591.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Sheldrick, G. M. (1997). SHELXTL. Version 5.1. Bruker AXS Inc., Madison, Wisconsin, USA.
Siemens (1994). XSCANS. Version 2.1. Siemens Analytical X-ray Instruments, Inc., Madison, Wisconsin, USA.
Tu, S. J., Miao, C. B., Gao, Y., Feng, Y. J. \& Shi, D. Q. (2002). Chin. J. Struct. Chem. 21, 222-226.
Wang, X. S., Shi, D. Q. \& Tu, S. J. (2002). J. Chem. Crystallogr. 32, 381-384.
Wang, X. S., Shi, D. Q., Tu, S. J., Yao, C. S. \& Wang, Y. C. (2002). Chin. J. Struct. Chem. 21, 146-149.

